
Add to Cart
0Cr21Al6 resistance wire is widely used in industrial and electrical fields, mainly in heating elements, resistors, thermocouples, and more.
0Cr21Al6 resistance wire is a commonly used electric heating alloy material with wide applications in industrial heating equipment.
0Cr21Al6 resistance wire is widely used as heating elements in hot air furnaces and heat treating furnaces. They generate high-temperature air or thermal energy for heating objects or fluids in industrial production.
In metal smelting furnaces and other melting equipment, 0Cr21Al6 resistance wire serves as heating elements to help melt metals or other substances into a liquid state.
Heating elements in injection molding machine heaters often utilize 0Cr21Al6 resistance wire to heat and maintain the flow state of plastics during the injection molding process.
In vacuum furnaces, 0Cr21Al6 resistance wire is used as heating elements to help heat and process materials such as metals, ceramics, etc., in a vacuum environment.
0Cr21Al6 resistance wire is used as heating elements in hot press machines and hot press equipment to heat and process various materials such as wood, plastics, etc.
Alloy Nomenclature Performance | 1Cr13Al4 | 0Cr25Al5 | 0Cr21Al6 | 0Cr23Al5 | 0Cr21Al4 | 0Cr21Al6Nb | 0Cr27Al7Mo2 | |
Main Chemical composition | Cr | 12.0-15.0 | 23.0-26.0 | 19.0-22.0 | 20.5-23.5 | 18.0-21.0 | 21.0-23.0 | 26.5-27.8 |
Al | 4.0-6.0 | 4.5-6.5 | 5.0-7.0 | 4.2-5.3 | 3.0-4.2 | 5.0-7.0 | 6.0-7.0 | |
Re | opportune | opportune | opportune | opportune | opportune | opportune | opportune | |
Fe | Rest | Rest | Rest | Rest | Rest | Rest | Rest | |
Nb0.5 | Mo1.8-2.2 | |||||||
Max. continuous service temp. of element(°C) | 950 | 1250 | 1250 | 1250 | 1100 | 1350 | 1400 | |
Resistivity at 20ºC(μΩ·m) | 1.25 | 1.42 | 1.42 | 1.35 | 1.23 | 1.45 | 1.53 | |
Density(g/cm3) | 7.4 | 7.1 | 7.16 | 7.25 | 7.35 | 7.1 | 7.1 | |
Thermal conductivity(KJ/m·h·ºC) | 52.7 | 46.1 | 63.2 | 60.2 | 46.9 | 46.1 | ||
Coefficient of lines expansion(α×10-6/ºC) | 15.4 | 16 | 14.7 | 15 | 13.5 | 16 | 16 | |
Melting point approx.( ºC) | 1450 | 1500 | 1500 | 1500 | 1500 | 1510 | 1520 | |
Tensile strength(N/mm2) | 580-680 | 630-780 | 630-780 | 630-780 | 600-700 | 650-800 | 680-830 | |
Elongation at rupture(%) | >16 | >12 | >12 | >12 | >12 | >12 | >10 | |
Variation of area(%) | 65-75 | 60-75 | 65-75 | 65-75 | 65-75 | 65-75 | 65-75 | |
Repeat Bending frequency(F/R) | >5 | >5 | >5 | >5 | >5 | >5 | >5 | |
Hardness(H.B.) | 200-260 | 200-260 | 200-260 | 200-260 | 200-260 | 200-260 | 200-260 | |
Continuous Servicetime(Hours/ ºC) | -- | ≥80/1300 | ≥80/1300 | ≥80/1300 | ≥80/1250 | ≥50/1350 | ≥50/1350 | |
Micrographic structure | Ferrite | Ferrite | Ferrite | Ferrite | Ferrite | Ferrite | Ferrite | |
Magnetic properties | Magnetic | Magnetic | Magnetic | Magnetic | Magnetic | Magnetic | Magnetic |
![]() | ||
![]() | ||
![]() | ||
![]() | ||
![]() |